News image News image News image News image News image News image News image

Новые виды транспорта:

Новые виды транспорта

Во все времена и у всех народов транспорт играл важную роль. На современном этапе значение его неизмеримо выросло. Сегодня существование лю...

Электромобиль

Электромобиль - транспортное средство, ведущие колеса которого приводятся от электромотора, питаемого аккумуляторными батареями. Впервые появился он в Англии и во Фр...



Моторвагонные поезда — альтернатива локомотивной тяге
Перевозки - Новые виды городского транспорта

моторвагонные поезда — альтернатива локомотивной тяге

Начальный этап развития железных дорог характеризовался использованием пассажирских поездов исключительно на локомотивной тяге. С широким распространением электрической тяги появилась альтернатива этому решению в виде поезда, в котором тяговая мощность распределена по всей его длине. До сих пор в этом отношении не определилась единая тенденция, хотя в пригородных пассажирских перевозках практически везде используется принцип распределенной тяги.

Эксплуатационные и коммерческие аспекты

На линиях облегченных городских железных дорог и трамвая гибкая и хорошо зарекомендовавшая себя концепция «моторный вагон + прицепной вагон» в конце 1950-х годов из-за больших расходов на персонал была заменена более современной, предусматривающей использование моторвагонных поездов из сочлененных вагонов с общим салоном.

На метрополитене и городских железных дорогах (S-Bahn), имеющих выход на магистральные линии, относительно высокая скорость движения и короткие расстояния между остановками требуют применения поездов с большим числом моторных осей. Еще в 1970 г. при разработке электропоезда серии 420 для городской железной дороги Мюнхена исходили из максимальной мощности системы тягового электроснабжения. Девятивагонный поезд с приводом на все оси имеет мощность продолжительного режима 7,6 МВт, развивает максимальную скорость 120 км/ч и ускорение при разгоне 1 м/с2.

Для пригородных и региональных пассажирских перевозок используют поезда на локомотивной тяге. Депо, осуществляющие техническое обслуживание пассажирских вагонов и локомотивов, были исторически разделены в системе железных дорог. Поезда на локомотивной тяге позволяли гибко реагировать на изменения пассажиропотока путем увеличения или уменьшения числа вагонов. К сожалению, станции многих больших городов являются тупиковыми на ответвлениях от магистральных линий. С введением уплотненных графиков движения время стоянки поездов S-Bahn и региональных необходимо было сокращать из-за недостаточной пропускной способности станций. Все указанные факторы говорили о том, что вместо смены локомотивов речь могла идти только об использовании челночных поездов с локомотивом в одном конце и вагоном с кабиной управления в другом. В качестве альтернативного варианта могут рассматриваться моторвагонные поезда.

В состав пассажирских поездов дальнего сообщения долгое время включались беспересадочные вагоны, которые на маршрутах большой протяженности, в том числе и международных, входили в состав разных поездов. В период развития системы междугородных поездов InterCity (IC) беспересадочные вагоны в международных сообщениях заменили поезда EuroCity (EC). Здесь для электроподвижного состава серьезным препятствием стали места стыкования разных систем тягового тока, а для поездов с тяговым приводом любого типа — различие систем СЦБ.

После того как на границах между европейскими странами были отменены остановки для паспортного и таможенного контроля, смена локомотивов стала тормозом для повышения маршрутной скорости поездов. Современная силовая электроника позволяет с допустимыми расходами строить многосистемные электровозы и электропоезда. Примером могут служить поезда Thalys Национального общества железных дорог Франции (SNCF) с концевыми моторными вагонами и ICE3 железных дорог Германии (DBAG) с распределенной тягой.

Из-за большого числа тупиковых станций в Германии DBAG широко используют в междугородных сообщениях челночные поезда. Логичным шагом был бы переход от них к моторвагонным поездам с организацией технического обслуживания по системе, принятой для высокоскоростных поездов ICE.

В грузовых перевозках на сегодняшний день альтернативы локомотивной тяге нет.

Коммерческие аспекты

Высокоскоростные новые линии с мощными и комфортабельными поездами оправдывают себя только в том случае, если капитальные и эксплуатационные затраты находятся в разумном соотношении с доходами. Анализ затрат жизненного цикла (LCC) показывает, что расходы на техническое обслуживание и ремонт подвижного состава (включая финансовые потери от простоя во время ремонта) являются важной статьей LCC.

Традиционная концепция раздельного технического обслуживания тягового подвижного состава и пассажирских вагонов с разными интервалами проведения профилактических и ремонтных работ оказывается несостоятельной при расчетах соотношения между LCC и экономической эффективностью. В связи с этим в Гамбурге (рис. 3), Мюнхене и Берлине для технического обслуживания поездов ICE были построены специализированные депо, в которых внедрена автоматическая система диагностики. Благодаря этому поезда ICE имеют годовой пробег 550 тыс. км, в то время как для традиционных поездов на локомотивной тяге он составляет 300 тыс. км.

В этих депо обслуживают поезда с концевыми моторными вагонами (ICE1, ICE2) и поезда с распределенной тягой (ICE3, ICE-T). Длина ремонтного цеха составляет 400 м, что соответствует максимальной длине поезда и стандартной в Европе длине платформы.

Коммерческим аргументом в пользу применения моторвагонных поездов с распределенной тягой является увеличенная полезная длина. Если бы поезд ICE3 длиной 200 м и мощностью 8 МВт не был с распределенной тягой, ему потребовалось бы два моторных вагона по концам. При этом полезная длина уменьшилась бы на 30 м (15 %), что означает потерю полезной длины пассажирской платформы и уменьшение числа продаваемых пассажирских мест. Даже при одном моторном вагоне в головной части и ограничении максимальной мощности поезда 6 МВт была бы значительная потеря пассажирских мест по сравнению с моторвагонным той же длины.

Поезд длиной 200 м, ведомый локомотивом и составленный из двухэтажных вагонов, по самым приближенным расчетам на 10 % дороже в изготовлении, чем поезд такой же длины из обычных вагонов. При этом число мест для сидения больше на 20 %, чем в обычном поезде.

На Тайване, например, потребовалось при коротких пассажирских платформах максимально увеличить число мест в поезде. В европейском варианте (Alstom/Siemens) эту проблему предлагалось решить путем использования двухэтажных поездов с концевыми моторными вагонами (рис. 4), в японском — за счет моторвагонных поездов с вагонами увеличенной ширины (пять мест в ряду). Вариант двухэтажных поездов с распределенной тягой и еще бóльшим числом мест был признан нереальным из-за дефицита свободного пространства под кузовами вагонов для размещения оборудования.

К недостаткам двухэтажных поездов в высокоскоростном движении следует отнести:

· увеличенную нагрузку на ось;

· большой объем вытесняемого воздуха при движении в тоннелях;

· увеличенную боковую поверхность, воспринимающую ветровую нагрузку.

Тенденции и аргументы

В высокоскоростном движении наметилась тенденция к использованию моторвагонных поездов. При разработке ICE3 руководствовались теми же соображениями, что и в начале 1970-х годов, когда создавался моторвагонный электропоезд серии 403: высокая скорость и соответствующая ей аэродинамика, повышенная мощность при хорошем сцеплении за счет большого числа моторных осей, комфортность.

Япония с самого начала разработки системы Синкансен ориентировалась на поезда с распределенной тягой, в то время как во Франции предпочтение отдали поездам TGV с концевыми моторными вагонами. Однако там тоже ведутся работы над высокоскоростным моторвагонным поездом AGV.

В дизель-поездах большим недостатком является вибрация, передаваемая кузову от дизеля. К этому добавляется шум вентиляторов, которые охлаждают тяговые преобразователи, размещенные, как и дизель, под кузовом.

Для эксплуатационных служб поездá на локомотивной тяге более удобны с точки зрения изменения составности в зависимости от колебаний пассажиропотока. В них пассажиры в поисках свободного места могут беспрепятственно проходить через весь состав, что невозможно в моторвагонных поездах, составленных из двух и более секций.

Для моторвагонных поездов и челночных, имеющих концевой вагон с кабиной управления, большое значение имеют поперечные ветровые нагрузки, величина которых при повышенной скорости и малой массе поезда становится опасной. В наибольшей степени ветровым нагрузкам подвержены японские поезда Синкансен, имеющие осевую нагрузку 12 т. Стесненные габариты тоннелей на их линиях потребовали поиска аэродинамически оптимального решения лобовой части поездов. Узкий и удлиненный обтекатель облегчает прохождение тоннелей. Однако при движении на открытых участках под действием бокового ветра на нем возникает «эффект крыла», в результате которого аэродинамическая подъемная сила разгружает переднюю тележку.

В Японии при создании поездов Синкансен стремятся к максимальному облегчению конструкций. В первые годы на линиях Синкансен имели место серьезные проблемы с состоянием верхнего строения пути. Это в основном объяснялось низким качеством щебеночного балласта при большой интенсивности движения высокоскоростных поездов. Сейчас на линиях Синкансен используется путь на жестком основании. Для уменьшения осевых нагрузок поезд серии 700, состоящий из 11 вагонов, выполнен с 36 моторными осями, причем тяговая мощность составляет лишь 275 кВт на одну ось. Эта мера, направленная на сохранение верхнего строения пути, усложняет конструкцию подвижного состава. Хотя производство больших партий моторно-редукторных блоков более выгодно, в то же время увеличивается объем монтажа, а в эксплуатации возрастают затраты на техническое обслуживание и увеличивается вероятность повреждений. Другой крайностью с точки зрения концепции привода для такого поезда мощностью 9,9 МВт было бы использование двух четырехосных концевых моторных вагонов, как в поезде ICE1. При этом длина поезда увеличилась бы с 280 до 310 м при одном и том же числе мест.

Сравнение расходов жизненного цикла

Приведенные аргументы еще не позволяют сделать окончательный вывод о том, какой концепции тягового привода следует отдать предпочтение. В связи с этим дается сравнение двух реальных поездов, выполняющих одинаковую работу в близких эксплуатационных условиях, имеющих одинаковый годовой пробег и сравнимые концепции технического обслуживания. Для этого использованы данные DBAG и результаты исследований консалтинговой компании DE-Consult.

По предварительным расчетам, потребление электроэнергии более мощным поездом с распределенной тягой, а также расходы на его текущее содержание выше из-за большего числа тяговых двигателей и увеличенной пассажировместимости. Хотя общие LCC поезда с распределенной тягой на 10 % выше, они покрываются за счет более высоких доходов, обусловленных бóльшим числом мест. В качестве окончательного результата сравнения может служить 9 %-ный выигрыш в пользу поезда с распределенной тягой по удельным LCC на одно пассажирское место.

Выводы

Несмотря на полученные расчетным путем и приведенные в таблицах результаты для поездов семейства ICE, каждый конкретный случай выбора должен рассматриваться отдельно с учетом всех местных условий и параметров, таких, как скорость движения, расстояние между остановками, топография линий, величина пассажиропотока, возможности изготовления, ремонта и текущего технического обслуживания в стране использования. Для поездов на локомотивной тяге более удобна давно сложившаяся система технического обслуживания в локомотивных и вагонных депо.

Компактный монтаж электрооборудования в локомотиве проще, чем при его распределении по всей длине под кузовами вагонов в моторвагонном поезде. Для технического обслуживания полносоставных моторвагонных поездов в депо нужны цеха большой длины. Опыт показывает, что эффективность технического обслуживания значительно выше при проведении его на комплектном поезде, чем повагонно.

Вагоны поездов ICE3 и ICE-T изготавливают в Германии разные компании, объединенные в консорциум. Формирование поездов происходит лишь на путях испытательного центра компании Siemens в Вегберг-Вильденрате.

Для поездов, используемых в дальнем сообщении, требование повышенной силы тяги при трогании (как у поездов S-Bahn) не является обязательным. Однако здесь должна быть обеспечена избыточная сила тяги при выходе на максимальную скорость или движении на подъемах до 40 ‰. Достижение необходимой силы тяги связано с проблемой использования сцепления, которое, в свою очередь, зависит от осевой нагрузки в поездах на локомотивной тяге и от числа моторных осей в моторвагонных поездах. Эти проблемы успешно решаются благодаря использованию средств современной силовой электроники и надежной защите от юза и боксования. При этом достаточной является мощность 1,4 МВт на ось локомотива (концевого моторного вагона) или 0,5 МВт на ось моторвагонного поезда.

Поезда ICE1 и ICE2 с концевыми моторными вагонами, с распределенной тягой ICE3 и ICE-T из вагонов с наклоняемыми кузовами появились в последние 10 лет. В настоящее время они представляют собой семейство поездов высокого класса, используемых в дальних сообщениях. Каждый из них имеет свою нишу на рынке транспортных услуг: ICE1 большой пассажировместимости используется на протяженных маршрутах, ICE2 на более коротких, ICE3 там, где требуется наибольшая максимальная скорость и имеются уклоны до 40 ‰, а ICE-T наиболее удобен на относительно старых линиях с большим числом кривых.

Целью сравнения является выбор поезда с более высокой экономической эффективностью, для чего сравнивали расходы LCC поезда ICE2 с концевыми моторными вагонами и ICE3 с распределенной тягой.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

История транспорта:

Транспорт Россия

News image

Городской общественный транспорт в России начал массово развиваться в конце XIX века. В начале это бы...

Транспорт Европа

News image

Долгое время развитие и рост городов Европы был наиболее существенным в мире. Поэтому не удивительно, чт...

Транспорт США

News image

Как и в Европе, первыми видами общественного городского транспорта в США были метро (Нью-Йорк, 1904) и ...

Общественный транспорт сегоднешнего

News image

Развитие общественного городского транспорта в России, Европе и США несёт на себе основные черты исторического да...

Your are currently browsing this site with Internet Explorer 6 (IE6).

Your current web browser must be updated to version 7 of Internet Explorer (IE7) to take advantage of all of template's capabilities.

Why should I upgrade to Internet Explorer 7? Microsoft has redesigned Internet Explorer from the ground up, with better security, new capabilities, and a whole new interface. Many changes resulted from the feedback of millions of users who tested prerelease versions of the new browser. The most compelling reason to upgrade is the improved security. The Internet of today is not the Internet of five years ago. There are dangers that simply didn't exist back in 2001, when Internet Explorer 6 was released to the world. Internet Explorer 7 makes surfing the web fundamentally safer by offering greater protection against viruses, spyware, and other online risks.

Get free downloads for Internet Explorer 7, including recommended updates as they become available. To download Internet Explorer 7 in the language of your choice, please visit the Internet Explorer 7 worldwide page.